Conferences/Journals
- Adesokan, A., Madria, S., & Nguyen, L. (2025). DisTGranD: Granular event/sub-event classification for disaster response.
Online Social Networks and Media, 45, 100297.
[PDF]
[Code]
- Adesokan, A., Madria, S., & Nguyen, L. (2024, September). FReCS: A First Responder Classification System.
In International Conference on Advances in Social Networks Analysis and Mining (pp. 355-372). Cham: Springer Nature Switzerland.
[PDF]
[Code]
- Adesokan, A., & Elbassuoni, S. (2024, December). Factify: An Automated Fact-Checker for Web Information.
In 2024 IEEE International Conference on Big Data (BigData) (pp. 1546-1551). IEEE.
[PDF]
- Adesokan, A., & Madria, S. (2024, December). KeyMinES: Extracting Minimal Keyphrases for Sub-Events in Disaster Situations.
In 2024 IEEE International Conference on Big Data (BigData) (pp. 1-10). IEEE.
[PDF]
- Adesokan, A., Hu, H., & Madria, S. (2024, November). DisFact: Fact-Checking Disaster Claims.
In International Conference on Web Information Systems Engineering (pp. 421-437). Singapore: Springer Nature Singapore.
[PDF]
[Code]
- Adesokan, A., & Madria, S. (2024, July). CURD: Context-aware Relevance and Urgency Determination.
Proceedings of the 36th International Conference on Scientific and Statistical Database Management (pp. 1-12).
[PDF]
[Code]
- Adesokan, A., & Madria, S. (2023, December). NeuEmot: Mitigating neutral label and reclassifying false neutrals in the 2022 FIFA World Cup via low-level emotion.
In 2023 IEEE International Conference on Big Data (BigData) (pp. 578-587). IEEE.
[PDF]
[Code]
- Adesokan, A., Madria, S., & Nguyen, L. (2023). HatEmoTweet: Low-level emotion classifications and spatiotemporal trends of hate and offensive COVID-19 tweets.
Social Network Analysis and Mining, 13(1), 136.
[PDF]
- Adesokan, A., Madria, S., & Nguyen, L. (2023, September). TweetACE: A Fine-grained Classification of Disaster Tweets using Transformer Model.
In 2023 IEEE Applied Imagery Pattern Recognition Workshop (AIPR) (pp. 1-9). IEEE.
[PDF]
[Data]
- Adesokan, A. A. (2022). Covid-19 Control: Face Mask Detection Using Deep Learning for Balanced and Unbalanced Dataset.
International Journal of Intelligent Systems and Applications, 14(6), 50-62.
[PDF]